📘
Knox Finance Docs
  • Knox Finance
  • Overview
    • Options
    • Covered Calls
    • Risk Management
    • Vault System
    • Options Auction
    • Fee Structure
  • Liquidity Providers
    • Depositing Collateral
    • Withdrawing Collateral
    • Redeeming Claim Tokens
  • Option Buyers
    • Buying Options
    • Withdrawing Options
    • Exercising Options
  • Developers
    • System Architecture
    • Epoch Mechanics
    • Auction Lifecycle
    • Contract Deployments
  • Appendix
    • Delta Strike Formula
    • Option Pricing Formula
Powered by GitBook
On this page
  1. Appendix

Option Pricing Formula

PreviousDelta Strike Formula

Last updated 2 years ago

  • SSS - spot price

  • Δ\DeltaΔ - option delta

  • Δoffset\Delta_{offset}Δoffset​ - delta % offset

  • ϵ\epsilonϵ - delta offset

  • KΔcall/putK_{\Delta}^{call/put}KΔcall/put​ - delta strike computed using Δ\DeltaΔ

    • KΔcallK_{\Delta}^{call}KΔcall​ - delta strike computed for a call option

    • KΔputK_{\Delta}^{put}KΔput​ - delta strike computed for a put option.

  • τ\tauτ - time to maturity

  • g:Δ→KΔput/callg : \Delta \rightarrow K_{\Delta}^{put/call}g:Δ→KΔput/call​ - delta strike function which maps the delta parameter Δ\DeltaΔ to the strike price

  • foracle:(S,K,τ)→σf_{oracle}: (S,K,\tau) \rightarrow \sigmaforacle​:(S,K,τ)→σ - oracle function which maps the parameters S,K,τS,K,\tauS,K,τ to implied volatility σ\sigmaσ

The price curve can be calculated as follows:

KΔput/call=g(Δ)K_{\Delta}^{put/call} = g(\Delta)KΔput/call​=g(Δ)
KΔ−ϵput/call=g(Δ−ϵ)K_{\Delta - \epsilon}^{put/call} = g(\Delta - \epsilon)KΔ−ϵput/call​=g(Δ−ϵ)
σmax⁡=foracle(S,KΔput/call,τ)\sigma_{\max} = f_{oracle}(S,K_{\Delta}^{put/call},\tau)σmax​=foracle​(S,KΔput/call​,τ)
σmin⁡=σmax⁡±σmax⁡(Δoffset)\sigma_{\min} = \sigma_{\max} \pm \sigma_{\max}(\Delta_{offset})σmin​=σmax​±σmax​(Δoffset​)
tpercent=ti−t0ttotalt_{percent} = \frac{t_i - t_0}{t_{total}}tpercent​=ttotal​ti​−t0​​
σmarket=σmax⁡−tpercent⋅(σmax⁡−σmin⁡)\sigma_{\text{market}} = \sigma_{\max} - t_{\text{percent}}\cdot(\sigma_{\max} - \sigma_{\min})σmarket​=σmax​−tpercent​⋅(σmax​−σmin​)