📘
📘
📘
📘
Knox Finance Docs
Search
⌃
K
Knox Finance
Overview
Options
Covered Calls
Risk Management
Vault System
Options Auction
Fee Structure
Liquidity Providers
Depositing Collateral
Withdrawing Collateral
Redeeming Claim Tokens
Option Buyers
Buying Options
Withdrawing Options
Exercising Options
Developers
System Architecture
Epoch Mechanics
Auction Lifecycle
Contract Deployments
Appendix
Delta Strike Formula
Option Pricing Formula
Powered By
GitBook
Delta Strike Formula
S
S
S
- spot price
Δ
\Delta
Δ
- option delta
σ
\sigma
σ
- implied volatility
τ
\tau
τ
- time to maturity
ϕ
\phi
ϕ
- normal cumulative distribution function
Delta strike price
K
d
e
l
t
a
K_{delta}
K
d
e
lt
a
is calculated as follows:
v
o
l
a
t
i
l
i
t
y
_
f
a
c
t
o
r
=
σ
τ
{volatility\_factor} = \sigma \sqrt{\tau}
v
o
l
a
t
i
l
i
t
y
_
f
a
c
t
or
=
σ
τ
t
o
t
a
l
_
v
a
r
i
a
n
c
e
=
σ
2
τ
{total\_variance} = \sigma^2 \tau
t
o
t
a
l
_
v
a
r
ian
ce
=
σ
2
τ
z
=
(
t
o
t
a
l
_
v
a
r
i
a
n
c
e
2
−
Φ
−
1
(
Δ
)
⋅
v
o
l
a
t
i
l
i
t
y
_
f
a
c
t
o
r
)
z = \Big(\frac{{total\_variance}}{2} -\Phi^{-1}(\Delta)\cdot{volatility\_factor}\Big)
z
=
(
2
t
o
t
a
l
_
v
a
r
ian
ce
−
Φ
−
1
(
Δ
)
⋅
v
o
l
a
t
i
l
i
t
y
_
f
a
c
t
or
)
K
d
e
l
t
a
=
S
e
z
K_{delta} = S e^z
K
d
e
lt
a
=
S
e
z
Developers - Previous
Contract Deployments
Next - Appendix
Option Pricing Formula
Last modified
1yr ago